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We present a nonequilibrium statistical mechanics description of rank abundance relations (RAR) in random
community models of ecology. Specifically, we study a multispecies replicator system with quenched random
interaction matrices. We here consider symmetric interactions as well as asymmetric and antisymmetric cases.
RARs are obtained analytically via a generating functional analysis, describing fixed-point states of the system
in terms of a small set of order parameters, and in dependence on the symmetry or otherwise of interactions
and on the productivity of the community. Our work is an extension of Tokita [Phys. Rev. Lett. 93, 178102
(2004)], where the case of symmetric interactions was considered within an equilibrium setup. The species
abundance distribution in our model come out as truncated normal distributions or transformations thereof and,
in some case, are similar to left-skewed distributions observed in ecology. We also discuss the interaction
structure of the resulting food-web of stable species at stationarity, cases of heterogeneous cooperation pres-

sures as well as effects of finite system size and of higher-order interactions.
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I. INTRODUCTION

Understanding the relationship between complexity and
stability is a fundamental and controversial problem in ecol-
ogy [1]. Before the 1970s the proposition that highly com-
plex communities are more stable than simple ones was
widely supported [2,3]. However, this early intuitive idea
was challenged by theorists in the 1970s, who discussed the
stability of a community of species interacting randomly [4].
In particular, the applications of random matrix theory rigor-
ously revealed that the stability of a community strongly
depends on complexity, e.g., diversity and statistical proper-
ties of the interaction matrix, such as variance and connec-
tivity, and complexity tends to destabilize community dy-
namics [5]. Since then, many mathematical ecologists have
studied random community models to explain the apparent
contradiction between the complexity of real-world ecosys-
tems and the results of these mathematical studies [6,7]. Re-
cent theoretical developments, for example, have discovered
stabilizing factors of random community models: competi-
tion [8] and antisymmetric prey-predator relationships [9].
Empirical and theoretical works also suggested importance
of omnivory (higher connectance) [10,11] and weak interac-
tions [12] for stability.

If the relative abundances of the species in a community
are measured, inevitably a small number of very common
species will be identified (i.e., species with a high abun-
dance), along with some rare species and more numerous
species of varying intermediate degrees of rareness. Clarify-
ing the mechanisms underlying these rank abundance rela-
tions (RAR) (the relations between abundance and the num-
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ber of species possessing that abundance) are clearly another
fundamental problem of ecology [13,14]. In conservation bi-
ology as well, knowledge of RAR helps one to predict the
likelihood of population persistence and community stability
in face of global change. Various models have been applied
to ecosystem communities [15-19] and, in special, the recent
progress of the theory of “neutral” models [20-26] have
aroused constructive discussions on theoretical predictions
and the experimental studies on RAR. As the neutral models
mainly cover ecosystem communities where species compete
for niches on a single trophic level like a tropical forest or a
coral reaf, the models have left the more complex systems a
mystery. Such systems occur on multiple trophic levels and
include complex interactions, such as prey-predator relation-
ships, mutualism, competition, and detritus food chains. Al-
though RAR are observed universally in nature, their essen-
tial parameters have not been fully clarified.

As a step to explore RAR theoretically, in this paper, typi-
cal rank abundance relations are derived using a random
community model with few parameters such as the level of
symmetry of interaction matrix and cooperation pressure or
productivity. While random community models can be criti-
cized for a lack of immediate realism, they have the advan-
tage of being exactly solvable by analytical techniques. Ran-
dom replicator systems have, for example, been considered
as solvable models of interacting species in Refs. [27-29]. In
particlar, species abundance distributions of random replica-
tor models with symmetric couplings have been computed in
Ref. [29] using methods from equilibrium statistical mechan-
ics. Such static approaches are limited to cases of symmetric
couplings between species, in particular the presence of
predator-prey pairs (for which interactions are highly asym-
metric) can not be taken into account in such equilibrium
approaches. In order to remedy these shortcomings, we here
take a different dynamical approach, allowing for an exten-
sion to systems with an arbitrary proportion of predator-prey
pairs. To this end we employ methods different from those of
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Ref. [29] and focus on an approach based on dynamical gen-
erating functionals and path integrals.

It is interesting to note that stochastic models of complex
dynamically assembled food-webs [30,31], which is from a
simple dynamics governed by generalized birth and death
events, derive reasonable species abundance distributions, in
good agreement with real data. In such models the multispe-
cies dynamics is effectively reduced to that of a representa-
tive species, subject to a “mean field” interaction with the
remaining system. In a similar fashion our approach reduces
the evolution of species randomly coupled via quenched in-
teractions to a “one-species” effective process as well (albeit
a non-Markovian one). This mapping leads to an exact solu-
tion in the thermodynamic limit of infinite system size. For
the stochastic approach, the model has the randomness with
some probability. On the other hand, for generation func-
tional, it gives the fixed randomness in the deterministic time
evolution. Apart from providing a starting point for more
realistic modifications of the present model, our analysis can
hence, to a certain degree, be seen as complementary to the
approach of Refs. [30,31].

In the context of statistical mechanics another interesting
point of the present model is that the replicator dynamics
with asymmetric random interactions shows a nonequilib-
rium phase transition, i.e., two phases with qualitatively dif-
ferent behaviors are found (stable versus unstable). At the
same time the replicator system does not exhibit a Lyapunov
function, and is hence intrinsically a nonequilibrium model
without detailed balance. Further details can be found in the
statistical mechanics literature [32,33]. In our system desta-
bilization of a globally fixed point solution and its bifurca-
tion to limit cycle, heteroclinic cycle, and potentially chaos is
found when parameters are varied. The random replicator
model hence shows similarities, but also crucial differences
compared with, e.g., models of spin glasses [34,35] and neu-
ral network models [36,37]. It is hoped that the study of
random replicator dynamics may hence contribute to the un-
derstanding and classification of dynamical phase transitions
in disordered systems.

This paper is organized as follows. We will define the
model in Sec. II and then discuss the statistical mechanics
analysis based on a path-integral approach in Sec. III. In Sec.
IV, we show results for pairwise interaction: a stability analy-
sis, phase diagram, survival function, rank-abundance rela-
tions (RAR), the species abundance distribution (SAD), fi-
nite size effects, and structure of the resulting food web are
discussed. We then turn to heterogeneous cooperation pres-
sure and higher-order interactions in Secs. V and VI, respec-
tively. We summarize our results in Sec. VIIL.

II. MODEL

We here study the simplest system of random replicator
subject to Gaussian interaction, and focus on the model
originally proposed by Diederich and Opper [27,28]. In con-
ventional replicator dynamics, the system consists of N spe-
cies, labeled by i=1,...,N. The composition of the popula-
tion of species at time ¢ is then described by a concentration
vector X(¢)=(x;(?),...,xy(z)), where x,() denotes the con-
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centration of species i=1,...,N, and where 2x,(f)=1. The
system evolves in time according to the following replicator
equations [38]

0 px(0] - vl n
xi(t)
where fj[x] is the “fitness” of species i at time 7, and where
v(¢) denotes the mean fitness of species in the population.
Hence species fitter than average increase in concentration,
whereas the weight of species less fit than average is re-
duced.
We here take the fitnesses f[x] to be frequency depen-
dent, i.e., they are functions of the vector x. Specifically we
will assume, in the simplest setting, that

filx] == 2ux; + E WiiXj, (2)
j#i
i.e., that interaction between species is pairwise and charac-
terized by the matrix elements w;;. Generalization to multi-
species interaction is possible [39,40], and will be discussed
below.
The matrix elements {wij,wji} (for any pair i <j) are cho-
sen from a Gaussian ensemble. Specifically we choose

o — WP w2

Wij:05 Wl]: W, Wl‘joi:]._‘F, (3)
where --- denotes an average over the random couplings. w
here characterizes the magnitude of the interaction, and I" is
a symmetry parameter and takes values I'e[-1,1]. For I
=1 the interaction between any pair of species i <j is fully
symmetric, w;=w;;. In this case no predator-prey pairs are
found in the system. For I'=0 w;; and w); are uncorrelated,
the fraction of predator-prey pairs is hence 50%. For I'=—1
all pairs of species are in predator-prey constellations, one
here has w;;=-w;. Choosing intermediate values of I" allows
one to interpolate smoothly between these regimes. The eco-
logically most relevant setup corresponds to negative values
of T, describing prey-predator type interaction between spe-
cies, rather than cooperation and direct mutual competition.
Diagonal terms in Eq. (2) can be taken into account by writ-
ing w;=—2u, where u in the above setting denotes the so-
called cooperation pressure [41]. In an ecological context u
takes mostly positive values. For u—o the ecosystem is
found in a state of perfect cooperation and maximal diversity
(with all species surviving and having equal concentrations).
The essential parameter p=2u can be termed as the produc-
tivity of a community in the sense of Lotka-Volterra equation
(this will be explained in more detail in Sec. IV). Finally, in
order to guarantee a well-defined thermodynamic limit N
— oo, with which the statistical mechanics analysis of the
model will be concerned, we rescale the concentration vector
by a factor of N, and use the normalization N~'Sx()=1.
Upon setting v(t)=N""2x,(t)f[x(¢)] this normalization is
conserved by the replicator dynamics (1).

We will address the model by a combination of analytical
and computational methods. The statistical mechanics theory
is described in the following sections, and its results will be
compared against simulations in the subsequent section. All
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simulations are here performed using the method described
in Ref. [42]. This numerical scheme effectively amounts to a
first-order forward integration with a dynamically adapted
time step. The latter is here necessary to avoid species con-
centrations to go negative in the discretized system. The dy-
namical time stepping used in our simulations if typically of
the order of 0.01 to 0.1.

III. STATISTICAL MECHANICS THEORY
A. Path integral analysis

The above system can be addressed by generating func-
tional techniques originally devised in the theory of disor-
dered systems [43]. It is also applied to linear evolutionary
dynamics model in Ref. [44] and can be adapted to the study
of random Lotka-Volterra communities [45]. We will not de-
tail the mathematical steps here, as they have been reported
in depth in the literature [28,40]. In the thermodynamic limit
the system is found to be described by an effective single-
species process of the form [28]

x(1) = x(t)(— 2ux(t) — Fft dt' G(t,1")x(t") — 5(t) — v(t))

0

(4)

(ty denotes the time at which the dynamics is started). This
process is non-Markovian in time, and subject to colored
Gaussian noise 7(r), with temporal correlations given by

(n(t)n(t")y =w*C(t,t"). (5)

This colored noise is obtained from the interactions of ran-
domness, which each trajectory has. C(¢,7) and G(¢,t') are
the correlation and response functions, and are to be evalu-
ated self-consistently as

Ct.,t") = (x(0)x(1"))., G(t,t’)=<;jT(:,))>, (6)

where (--+), denotes an average over trajectories of the ef-
fective stochastic process (4). The analysis then proceeds by
making a fixed-point ansatz, amounting to Q=C(z,t"). We
also write x=/drG(r) for the integrated response, and con-
sider only ergodic states in which y remains finite. Restrict-
ing the analysis to asymptotically time-independent solutions
of the effective process the following self-consistent equa-
tions for the resulting static order parameters Q, x, and v (the
fixed-point value of the average fitness) can then be derived
similar to those reported in Ref. [28]

A
%: J Dz(A—2), (7)
2 A
%: J Dels -2, 8)
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FIG. 1. (Color online) Phase diagram of the model with pairwise
interaction in the (w,u) plane for I'=1,0,-1 from top to bottom.
The system approaches a unique stable fixed point in the region
above the respective lines, and remains unstable and nonergodic
below the phase boundaries.

A
M= f Dz, ©)

Here Dz= %T < 2dz denotes the standard Gaussiall measure,
and one has N=w?Q, M=2u+w Ty and A=-v/V\. We note
that ¢p=[ fxDz:%[l +erf(A/\2)] describes the fraction of
surviving species. These equations are readily solved nu-
merically, providing analytical predictions of the statistics of
fixed-point solutions as functions of the model parameters
w,I" and u.

B. Cooperation pressure and strength of interaction

For reasons of completeness we re-iterate the phase be-
havior of the model as obtained by a linear stability analysis
first reported in Ref. [28]. One here finds a stable region in
which the fixed-point of the replicator dynamics is unique
and locally attractive, separated from an unstable phase, as
shown in Fig. 1.

For I'=—1, the system is always found to be stable for any
u>0 independently of w. At fixed w=1, the onset of insta-
bility occurs at u,=v2/4 and u,=v2/2 for I'=0 and I'=1,
respectively. While the generating functional approach is ap-
plicable for general symmetry parameter I', a static analysis
based on the replica method is possible for symmetric cou-
plings (I'=1). This has been carried out in Refs. [27,46]. The
replica approach is here fundamentally different from ours,
as it is only of a static (time-independent) nature. The er-
godic fixed-point phase corresponds to a regime in the static
analysis in which only one well-defined minimum of the
Lyapunov function is found, corresponding to a so-called
replica symmetric solution [35]. This solution becomes un-
stable at the phase transition, referred to as a de Almeida-
Thouless instability, coinciding with the location dynamical
instability has been identified. For u.< uI'=1,w=1)
=v2/2 replica symmetry breaking (RSB) occurs, i.e., the
manifold of minima of the Lyapunov function becomes dis-
connected [35]. In conclusion, while the replica approach,
requiring the existence of a Lyapunov function, is limited to
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the case I'=1, generating functionals can be used to study the
replicator system for any degree of asymmetry in the inter-
action matrix, as this approach requires only the knowledge
of the dynamical equations of the system (the replicator
equations), but is independent of the existence or otherwise
of a quantity minimized by these dynamics. For the case of
symmetric couplings, I'=1, the results from both methods
coincide. Finally, since the behavior of the system can be
seen to be qualitatively independent of the coupling strength
w (which effectively rescales the cooperation pressure), we
will focus solely on w=1 in the following.

C. Species abundance distribution (SAD)

Making a fixed point ansatz in the effective process (4)
amounts to considering the time-independent solution of the
effective species process of the form [28]

N _

x(g) = 0= v= ), (10)
M

which represents the stochastic expression of the population
in the stable state. z is here a static random _variable drawn
from a standard Gaussian distribution [VAz reflects the
single-particle noise 7(f) which becomes time-independent
in the fixed-point regime]. @(---) is the step function. Note
that, as mentioned above, only a fraction of species have
positive concentrations at the fixed point, and that a comple-
mentary fraction of species dies out asymptotically. The dis-
tribution of concentrations x at the fixed point is thus a
Gaussian cutoff at x=0 combined with a S-peak at x=0 [42].
The so-called ““survival function”

a(x) = lim %E O(x;—x), (11)

N—x i

denotes the fraction of species with a concentration strictly
larger than x at the fixed point. The survival function, indi-
cating the probability of a species having an abundance
larger than x, is easily computed from Eq. (10) and is found
as

M
A——Fx
1 VA
a(x):z 1 +erfl ———— (12)

\2
in the thermodynamic limit. The fraction of survivors ¢ as
defined above is obtained as the special case ¢=a(x=0).

Using the cumulative distribution function C(x)=1
—a(x) (denoting the probability for a species to have a con-
centration less than or equal to x) the abundance distribution
for x>0 is given by

M \2
aclx) M (A_’_Kx)
Fo=S0 o M ol 3
dx \"277)\ 2

A similar expression has been obtained for the case of sym-
metric couplings (I'=1) based on replica techniques in Ref.
[29]. These earlier findings are found from our generating
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FIG. 2. (Color online) Survival functions a(0) and «(1) as func-
tions of the cooperation pressure at fixed w=1. Upper curves show
a(0), lower curves a(1), with I'=—1,0,1 from top to bottom in
each group. Lines are from theory [valid only above u.(I')], sym-
bols from simulations of systems with N=300 species, averaged
over 20 samples. Surviving species in simulations are identified as
species with x;>0.01 asymptotically.

functional analysis as a limiting case, so that generation
functional analysis contains the technique of replica method
as mentioned above.

IV. RESULTS FOR PAIRWISE INTERACTION

A. Survival function

We plot the survival functions a(x=0) and a(x=1) as a
function of the cooperation pressure and for different values
of I' in Fig. 2. As seen in the figure the diversity of the
population (as measured for example by the number of sur-
viving species) increases with larger cooperation pressure.
The figure also demonstrates good agreement between nu-
merical simulations and theoretical predictions for large val-
ues of the cooperation pressure u. In this phase the system is
stable and ergodic and hence the fixed-point theory applies.
Numerical simulations are performed using the discretization
scheme described in Ref. [42]. Below a critical value u (I")
stability and ergodicity are lost (for I'>>~1), and the above
theory can no longer be expected to be accurate, and system-
atic deviations between theory and simulations may occur.
Still the qualitative agreement between theoretical lines, ex-
tended into the unstable phase, where they are technically no
longer valid, is surprisingly good (RSB effects have been
seen to be weak in the low-u phase in previous studies). No
unstable phase is present for fully anti-correlated couplings
(I'=-1) and non-negative cooperation pressure.

B. Rank-abundance relations

If the S=¢N surviving species are re-labeled and ordered
according to their abundance in descending order, i.e., if x;
=x,=---=xg then a(x) can be understood as representing
the species rank n according to
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FIG. 3. (Color online) Rank abundance relation for w=1, I'=
—1. Markers are from simulations. (N=200, 20 samples, 10 000
iterations using the integration scheme of Ref. [42]), lines from the
fixed point theory.

n

a(x) = N for x € [X,,1,%,)- (14)
The function a(x) is a nonincreasing monotonic function,
and can hence be inverted. The abundance x(n/N) of the nth
most abundant species can then be written as

x(n/N) = a'(n/N). (15)

This representation is generally referred to as a “rank abun-
dance relations” (RAR) in the ecology literature. We find
typical sigmoidal patterns which have been observed in dif-
ferent regions [20] and with different species compositions
[47], see Figs. 3-5. In general, for large value of u the RAR
are broad and corresponds to RAR for a species-rich com-
munity. Remarkably, the cross-over of the RAR patterns
from low-to high-u is similar to the observed transition from
low to high productivity areas in real-world data, that is,
comparing species-poor areas such as an alpine or polar re-
gion to a species-rich tropical rain forest [20]. The transition
also corresponds to the secular variation of patterns observed
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—- u=0.6 theory
—- u=0.8 theory
-+ u=1.0 theory
u=0.2 simulation

oS

<
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R
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Rank n/N

FIG. 4. (Color online) Rank abundance relation for w=1. I'=0.
Markers are from simulations. (N=200,20 samples), lines from the
fixed point theory, valid for u>u.= 2/ 4, and of an approximate
nature for u <u,.
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FIG. 5. (Color online) Rank abundance relation for w=1, I'=1.
Markers are from simulations. (N= 200,20 samples), lines from the
fixed point theory, valid for u>u,=v2/2, and of an approximate
nature for u<<u,.

in abandoned cultivated land [48]. This supports the conten-
tion that u is a maturity parameter, as is suggested by an
earlier evolutionary model in Ref. [49].

C. Species abundance distribution and Preston’s octave plot

Empirical data of species abundance have been taken for
example in the studies of Ref. [50-53], and are normally
presented as plots of “species per octave.” That is, species
are grouped according to their abundance, and any species
with abundance (number of individuals of that species
present in the ecosystem) in the interval of say [27,2™*!) is
subsumed in octave n (n being an integer). Log-normal dis-
tribution are then observed, e.g., in Refs. [51,52]. In order to
depict the species abundance distributions in a manner simi-
lar to Preston’s octave plot, we plot xF(x) versus x in a log
scale following Ref. [29], see Figs. 6-8 [64].

Generally, we find that an increased co-operation pressure
(equivalently an increased productivity, see below) larger u
leads to “octave plots” with small average and small vari-
ance. Species concentrations are here mostly found at a value

mans T T
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0.8 |-~ u=0.8 theory A 3
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o) L | O u=0.4simulation| ,/ / % =
» 0.6 ! h 1
N2 0 u=0.6 simulation| ;' 5
= L | © u=0.8 simulation| !: / a 4
s A u=1.0 simulation l__' i i
0.4 g R _
w/ WE
r 7 < T 7
J/ad A
021 J A 2Py 7
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0 =7 | L B
0.1 1 0
X

FIG. 6. (Color online) I'=—1. The lines are from theory, u
=1.0,0.8,0.6,0.4,0.2 from top to bottom. The stable phase extends
to all u>0. Markers are from simulations. (N=200, averages over
50 samples are taken.)
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FIG. 7. (Color online) I'=0. The lines are from theory, u
=1.0,0.8,0.6,0.4,0.2 from top to bottom. Stable phase contains u
=1.0,0.8,0.6,0.4. u=0.2 is in the unstable phase where the theory
applies only as an approximation (ucz\E/ 4), Markers are from
simulations. (N=200,50 samples.)

of around x=1 (in the limit of infinite cooperation pressure
u— 0, all species have equal concentrations), and hence it is
mostly the octave containing x=1 which is populated. On the
other hand, for smaller u, fewer species survive, and the
variance in their concentrations can be significant. This leads
to octave plots of a large variance and a left-skewed form,
similar to shapes observed, e.g., in Refs. [17,20]. In the fully
asymmetric case I'=—1, see Fig. 6 all theoretical curves are
in good agreement with results from simulations for all val-
ues of u. Here the theory is exact. In Figs. 7 and 8, however,
corresponding to I'=0 and I'=1 the theory is valid only for
u>u.(I'). Good agreement between analytics and simula-
tions is again observed. For u <u, the theory is at best of an
approximative nature, and data from simulations appears
much more prone to noise, and systematic deviations are
observed from theoretical lines if they are continued into the
unstable phase. Qualitatively the theory is, however, able to
capture the shape of the octave plots, in particular their left
skewness.
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FIG. 8. (Color online) I'=1. The lines are from theory, u
=1.0,0.8,0.6,0.4 from top to bottom. Stable phase u=1.0,0.8 and
unstable phase u=0.6,0.4 (u.=2/2). Markers are from simula-
tions. (N=200,50 samples).
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FIG. 9. (Color online) I'=0, u=0.4. The line is from theory,
valid in the thermodynamic limit N—oc. Parameters are chosen
such that the system is in the stable phase, but close to the transition
point of the infinite system. Markers are from simulations, N
=10,20,50,200, respectively (averages over up to 10 000 samples
are taken for small system sizes).

D. Finite size effects

Our theoretical analysis based on methods from statistical
physics is mostly concerned with the limit of an infinite
number of species in the ecosystem, N— . This is, of
course, for analytical convenience only, but can be expected
to be accurate also in the limit of large, but finite system size,
as in real-world econetworks. To study deviations from the
exactly tractable infinite-size limit we discuss simulation re-
sults of the species abundance distribution of small systems
in Fig. 9. One realizes that the distribution becomes more left
skewed as the system size N is reduced, and that systematic
deviations from the theoretical lines emerge for systems
smaller than about 100 species. For smaller N, the amplitude
of the peak gets larger. Note also that the largest possible
concentration is limited by N (due to the normalization
2x;=N), so that an effective upper cutoff is introduced for
small systems, and the distribution is skewed to the left. In
nature it is impossible to obtain data for species with an
infinite concentration, so that the part of the curve at small

P ] “\ X ®
° \V/ ®

FIG. 10. (Color) Network of interspecies interactions for w=1,
I'=1, N=100, u=0.4.
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TABLE I. Representation of the interspecies interactions as col-
ored links. Species are assumed to be ordered such that r;>r;, for
i<j.

Links green violet blue red
(bij»bj) (+,4) (=) (+,-) (=)
interaction mutual competitive i consumes j j consumes i

and intermediate concentrations seems most relevant. Simu-
lations indicate a trend toward more left skewness at small
system sizes. Unlike in other models of statistical physics at
or near their phase transition points, we are unable to see
fat-tailed broad species abundance distributions in the
present model.

E. Structure of the resulting food web

N-species replicator equations can in the context of ecol-
ogy be shown to be equivalent to set of N—1 coupled Lotka-
Volterra (LV) equations [38]. As discussed in Refs. [29,54]
the following transformation of variables:

vi=xixy (i=1,2,...,N), (16)
Fi=Wiyr = Wym =Wy + D, (17)
bij: Wij - WM] (18)

renders the replicator system studied in the previous sections
equivalent to Lotka-Volterra equations of the form

dy N-1
_l=yi("i—zbijyj)~ (19)
J

The “resource species” M e{l,...,N} can here be chosen
arbitrarily, note that one then has y,=1 by construction,
leading to an (N-1)-dimensional system of LV equations.
The ecological interspecies interactions b;; are again of a
Gaussian random form, but have different correlations than
the couplings w;; of the original replicator system. For I'=1
and I'=~1, in particular, the b;; need not carry the symmetry
(antisymmetry, respectively, for I'=~1) of the couplings w;;.
The LV model describes an interaction network of species,
where the interaction between any given pair (i, ;) of species
(i # j) can be of a mutualistic type (b;; and b;; both positive),
of the competitive type (b;; and b;; both negative), or i and j
can have a prey-predator relationship (one of the couplings
positive, the other negative). These cases are summarized in
Table 1. The intraspecies interaction b;; is given by b;=w;;
—Wyi=—p—Wwy;=—r;. 1; is here the intrinsic growth rate of
species i in the LV equations, and follows a Gaussian distri-
bution of mean p and variance 1/N. In particular, in finite
systems, r; is positive with probability %[1+erf(\rm17)].
The parameter p(=2u) can thus be interpreted as the “pro-
ductivity” of the community (the larger p the more species
have positive growth rate). Note also that the average growth
rate N™'X,7; is given by p.

In Figs. 10-12 we depict the food webs in the stationary
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.\'
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FIG. 11. (Color) Network of interspecies interactions for w=1,
I'=0, N=100, u=0.2.

state of the replicator (or equivalently LV) dynamics. Disks
in these figures represent species, where species with a posi-
tive intrinsic growth rate (r;>>0) are shown as blue disks,
and species with negative growth rate are depicted as red
disks. Upon ordering surviving species such that r;=r,
=---=0=---=rq, the radius of the disk representing spe-
cies i is chosen to be proportional to |In(r,)|/|In|r;||. Note that
the variance of interaction strengths scales as 1/N in our
model, i.e., w;~O(1/ \W), so for small u we can expect that
|7/ <1 with large probability for any i (we have checked that
| <1 for all i for the data shown in Figs. 10-12). Since
[In|r,|| is monotonically decreasing function of |r,| in the in-
terval 0<|r| <1, larger blue disks hence mean larger pro-
ductivity (i.e., fast growing species if interactions b;; are
switched off), and large red represent large antiproductivity
(i.e., species with quickly decaying concentration in the ab-
sence of interactions in the LV system). Links between spe-
cies are shown in the figures only if the effective interaction
exceeds a certain threshold [i.e., if max(|b;][,|b;]) > 0.6b,,,
where by, =max(b;;) Vi, ]. The thickness of each link in the
figures is in proportion to max(|b,|,|b;)).

The different types of interactions (see Table I) are repre-
sented by different colors: green links denote mutualistic in-

s

FIG. 12. (Color) Network of interspecies interactions for w=1,
I'=-1, N=50, u=0.2.

031924-7



YOSHINO, GALLA, AND TOKITA

teractions, violet competitive interactions, blue lines denote
cases where a more productive species i exploits a less pro-
ductive one (j>1i, assuming species are ordered such that
ri=ry=... =ry), and red the reverse case of exploitation. In
Fig. 10 we depict a resulting food web for the case of sym-
metric interactions (I'=1), no red links are observed in this
case, as already reported in previous work [54]. On the other
hand, one can see red links in Figs. 11 and 12. For I'=1 the
interspecies relationships are hence almost all mutualistic,
i.e., there are no prey-predator-type interactions in the
equivalent Lotka-Volterra system. On the other hand, for I"
=—1 the relationships are almost all of the prey-predator type
and mutualistic enhancing interactions are found only very
rarely in the Lotka-Volterra system. The case of uncorrelated
couplings in the replicator dynamics, I'=0, is an intermediate
state. Finally, while we show the network topology only for
small values of the cooperation pressure u in the figures, we
note that with larger u, the network becomes more dense and
of a more homogeneous structure.

V. SYSTEM WITH HETEROGENEOUS CO-OPERATION
PRESSURE

Heterogeneity between species is in the present model
represented by the random interactions w;;. A second layer of
diversity can be introduced, by making the cooperation pres-
sure u species dependent, i.e., to use

filx]==2ux; + 2 WiiX;j (20)
J#i

as the fitness of species i, where now u; carries an explicit
index i and may be different from species to species. This
model has been introduced and studied with generating func-
tional techniques in Ref. [55]. In this section we will briefly
discuss how adding heterogeneity of this type effects the
distribution of surviving species, and will show how it can
give rise to non-Gaussian abundance distributions and how
these can be computed from the statistical mechanics theory.
Specifically we will draw the {u;} from a flat distribution
over an interval [uy—o,uy+0c], so that u, controls the mean
co-operation pressure, and o=0 is variability over the en-
semble of species. The generating functional analysis is
straightforward, but leads to an ensemble of effective species
processes, one for each cooperation pressure present in the
population. A fixed-point ansatz then leads to coupled equa-
tions for the static order parameters Q, x, A, expressed as
integrals over the distribution of cooperation pressures, as
reported in Ref. [55]. For x>0 the distribution of concentra-
tion of surviving species is then found as

o
F(x) ! f“o Udu@exp ——\)\

- 20 uy—o V27N
(21)

where M(u)=2u+w?Ty, A=w?Q. This is a superposition of
cutoff Gaussians, with varying mean and variances, and may
hence for sufficient width o of the distribution of cooperation
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F(x) 0.01;

0.001}%

0.0001=

FIG. 13. (Color online) Linear-log plot of distribution F(x) of
surviving species for a system with heterogeneous cooperation pres-
sures drawn from a flat distribution over [1-o,1+0], where o
=0.1,0.5,0.75 from top to bottom at the maximum. Symbols are
from simulations (I'=0, w=1, N=300 species, averages over 100
samples), solid lines from the generating functional fixed-point
theory [note that for reasons of clarity we plot F(x) not xF(x) in
contrast with other figures of previous sections].

pressures be of non-Gaussian shape. This is indeed observed
in Fig. 13, where we depict F(x) in a linear-log scale for
various degrees of heterogeneity in the cooperation pres-
sures. For small values of the width o, the resulting function
distribution F(x) is relatively close to being Gaussian, but
can develop slowly decaying tails, and nontrivial kurtosis if
the cooperation pressures become sufficiently variable across
species.

VI. HIGHER-ORDER INTERACTION

Up to now we have only considered the case of pairwise
interaction between species. Generalization to higher-order
interactions is possible and has been considered, for ex-
ample, in Refs. [39,40]. A random community model with
p-body interaction between species can be defined as fol-
lows:

%xi(l‘) == x(1)| 2ux;(1)

+ 2 J§

i Xiy (D%, (1) = x; (1) = v0) |
(igee. i) €M)

2»i3s~ sl

(22)

with p a fixed integer and where M,(-p)z{(iz, cndy) 1Sy
<iz<... <i,,$N;i2,...,i,,¢i}. The coupling tensor is
again assumed to be taken from Gaussian distribution with
moments

. |
7 2__P
(Jiz,. . "ip) - 2Np—1 ’
y . p!
Q! g3 =
Jiz,...,ip‘]il,...,ikfl,ikﬂ,...,ip = Fsz—l : (23)

We will consider p=3 in the following. A generating func-
tional and fixed-point analysis then leads to self-consistent
equations
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FIG. 14. (Color online) Abundance distribution xF(x) for the
system with two-species and three-species interaction. I'=0, the
cooperation pressure is set as in indicated in the legend.

A
%= f Dx(A=2), (24)
2 A
Qi/l =f Dz(A -2)?, (25)
A
—MX=J Dz, (26)

where Dz:%e‘zz/zdz again denotes the standard Gaussian
measure. These equations are very similar to the ones de-
rived above for the case p=2, differences are only to be
found in the detailed expressions for the quantities M and A,
Which_ now read )\=§§ﬁ’ M=2u+3T'Qyx. We have A=
—v/V\ as before.

Results for species abundance distribution of a replicator
system with three-species interaction are depicted in Fig. 14
(for uncorrelated couplings, I'=0), and compared to the case
p=2 at otherwise unchanged parameters. For reasons of clar-
ity we do not show results from numerical simulations, even
though we have performed numerical tests in the ergodic
stable phase and find reasonable agreement with the theoret-
ical predictions. All other parameters kept equal, a three-
body interaction appears to shift the peak of the distribution
to the right, and to reduce its height, while increasing its
width and left-skewness. Our findings thus suggest that
higher-order interactions may add to the diversity of the eco-
logical community, i.e., increase the variance of species con-
centrations at stationarity.

VII. SUMMARY AND CONCLUDING REMARKS

In summary we have presented a detailed discussion of
species abundance relations resulting from the evolutionary
dynamics of random replicator systems. Based on dynamical
techniques of statistical mechanics of disordered systems we
have extended the work of Refs. [29,54] to the case of asym-
metric and antisymmetric coupling matrices, and have also
taken into account higher-order interaction modes and sys-
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tems in which species are subject to heterogeneous coopera-
tion pressures. These systems typically show a phase transi-
tion between a stable, ergodic regime and an unstable phase,
in which the final state of the system depends on initial con-
ditions. Based on a fixed-point ansatz the statistical mechan-
ics theory is able to deliver exact analytical predictions for
the resulting species abundance relations in the limit of infi-
nite system size, and computer simulations of the replicator
dynamics are in perfect agreement with theoretical predic-
tions. The key findings of our analysis are the following. (i)
With larger cooperation pressure, regardless of interspecies
interaction, the diversity of the population increases. (ii) We
derive species-poor and species-rich RAR for symmetric in-
teraction and species-rich RAR for asymmetric interaction.
(iii) We find that the abundance distributions are typically
similar to a lognormal distribution, and of a left-skewed type
in our model, not too dissimilar from empirical data. (iv)
Visualizing the food-web structure of surviving species, and
distinguishing between different types of pairwise species
interactions gives insight into the stable relationship between
species at stationarity, in particular symmetric interactions
favor mutualistic relations, whereas antisymmetric couplings
tend to lead to one-sided exploitation of some species by
others. (v) Survival functions of systems with heterogeneous
cooperation pressure can display highly non-Gaussian sur-
vival functions with long tails. (vi) In finite systems our
theory is not applicable, and systematic deviations are ob-
served. In contrast with other disordered systems SAD are
not found to be fat-tailed or skewed to the right near the
transition of the infinite-size model.

The techniques we employ to study species abundance in
random replicator systems are in the present context limited
to fully connected random communities with Gaussian inter-
actions. Extension to more realistic distributions of couplings
may here be of interest, and similarly more realistic food-
web topologies (see, e.g., Ref. [56] or [57], and references
therein) could be taken into account in future work. Methods
from disordered systems theory can be adapted to those cases
as well, and further studies would most likely be based on
cavity methods or other tools used for finite-connectivity dis-
ordered systems [58,59].

There is currently also much interest in the relationship
between deterministic models of population dynamics (de-
fined through rate equations, e.g., the above replicator dy-
namics) and stochastic individual-based models [60,61]. It
has here been seen that demographic stochasticity in models
with a finite-number of individuals can induce behavior quite
different from models based on rate equations It may hence
be of interest to investigate finite microscopic individual-
based analogs of random replicator systems (for example,
based on Moran dynamics) and to compare their dynamical
behavior to that of the mean-field replicator system.
Individual-based versions of systems with randomly drawn
reaction rates have to our knowledge not been considered in
the literature. This is indeed an interesting line of potential
future work, although caution is appropriate when it comes
to analytical approaches, as the randomness of interactions
may make closed-form solutions of such models very diffi-
cult. It is hoped that our work may serve as a starting point
for future studies in these directions, and that analysis of
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random community models of theoretical ecology based on
methods from statistical mechanics may hence contribute to
an understanding of issues related to the diversity-stability
debate as mentioned in the Introduction.
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APPENDIX: GENERATING FUNCTIONAL ANALYSIS

The analysis of disordered systems by means of generat-
ing functional is a useful and powerful method, especially
because it does not require the existence of a Lyapunov func-
tion, and is hence not limited to systems with symmetric
interaction matrices. In this appendix we briefly outline the
main mathematical steps and concepts of this technique. Fur-
ther details can be found in a broad spectrum of sources in
the literature [35,43,59,62].

The basic idea is to reduce a high-dimensional system
with random couplings to an effective process for a respre-
sentative (mean-field) particle. These processes are typically
non-Markovian, even if the original system is Markovian,
and subject to colored noise. If x(1)=(x,(¢), ... ,xy()) repre-
sents a trajectory of the microscopic system (subject to ran-
dom interactions), then the starting point of the analysis is
the dynamical partition function (or generating functional)

)= <exp[§ iw<z>x,-<r>]>,

(A1)
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where (- --) represents an average over all possible trajecto-
ries of the system. The dynamic partition function can hence
be expressed as a path integral over all such trajectories, and
written in the form

Z[y] = J Dx&(equations of motion)e’=#()  (A2)

By “equations of motion” we here mean the microscopic
equations governing the dynamics, in our case the replicator
equations Eq. (1), they contain the quenched disorder of the
problem (i.e., the random couplings). The analysis proceeds
by writing the J functions in their Fourier representation by
means of conjugate variables {£;(r)}, subsequently perform-
ing the average over the disorder, and then by introducing
suitable macroscopic order parameters, such as, e.g., the cor-
relation function C(z,#')=N""Zx,(t)x,(t') and the response
function G(t,t')=iN"'Sx,(t)%,(t). In the thermodynamic
limit, N— o, an effective theory for C and G is then derived,
expressed as a self-consistent problem involving the above
mentioned effective single-particle process in conjunction
with self-consistent relations for correlation and response
functions. As seen in Egs. (4) and (5) the effective process
makes reference to C and G, and, on the other hand, these
order parameters are to be computed self-consistently as av-
erages over the ensemble of effective-particle trajectories (6).

For general systems the effective single-particle problem
can be addressed by suitable numerical schemes [63]. In the
case of the replicator problem further analytical progress is
possible based on the observation that the system attains a
fixed point at sufficiently large cooperation pressure [28]. In
this regime trajectories become effectively time-independent
asymptotically, and further simplification is possible yielding
Egs. (7)—(9). Details of these steps can be found in Refs.
[28,40].
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